470 kilomÃ"tres pour desservir la capitale

Eau de Paris entretient un réseau de quatre aqueducs historiques qui totalisent 470 kilomÃ"tres de linéaires : la Voulzie, la Vanne, le

Loing et l'Avre. Ces ouvrages majeurs transportent quotidiennement plus de la moitié de l'eau

potable fournie aux Parisiens, 483 000 mà tres cubes par jour en moyenne. D'octobre à décembre, l'aqueduc du Loing a fait l'objet d'un arrÃat

d'eau exceptionnel, l'occasion pour EAU DE PARIS de présenter les contours de l'une de ses activités de génie civil et d'ingénierie publique : la gestion et la rénovation des aqueducs parisiens. H2o novembre 2013.Â

AQUEDUCS PARISIENS

470 kilomÃ"tres pour desservir la capitale

Eau de Paris entretient un réseau de quatre aqueducs historiques qui totalisent 470 kilomÃ"tres de linéaires : la Voulzie, la Vanne, le Loing et l'Avre. Ces ouvrages majeurs, qui sont paradoxalement peu visibles, transportent quotidiennement plus de la moitié de l'eau potable fournie aux Parisiens, 483 000 mÃ"tres cubes par jour en moyenne. D'octobre à décembre, l'aqueduc du Loing a fait l'objet d'un arrêt d'eau exceptionnel. Cet arrêt d'eau a été motivé par deux natures de travaux structurants : un piquage pour l'alimentation en eau souterraine des communes de Viry-Châtillon et à terme de Grigny et la création d'une unité de traitement par ultraviolet des eaux du Loing en aval de l'aqueduc. À cette occasion, Eau de Paris a présenté les contours de l'une de ses activités de génie civil et d'ingénierie publique : la gestion et la rénovation des aqueducs parisiens.

EAU DE PARIS

illustrations Eau de Paris et Martine Le Bech2o - novembre 2013

L'aqueduc du Loing

Conçu dÃ"s la fin du XIXe siÃ"cle pour doubler la capacité de l'aqueduc de la Vanne par une nouvelle série de captages réalisés, pour l'essentiel, dans la vallée du Loing, aux environs de Nemours, l'aqueduc du Loing est parallÃ"le à ce dernier à partir de la forêt de Fontainebleau. Long de 95 kilomÃ"tres, il reçoit les eaux des aqueducs secondaires de la Voulzie et du Lunain ainsi que les eaux captées dans la nappe alluviale de la Seine prÃ"s de Montereau. Cet aqueduc ne présente que trÃ"s peu de parcours sur arcades en raison des progrÃ"s réalisés dans la fabrication des tuyaux de grande section permettant d'augmenter les pressions, dans les siphons notamment. L'ouvrage a été mis en service le 11 juin 1900, sa capacité nominale est de 210 000 mÃ"tres cubes par jour.

Le raccordement des Lacs d'Essonne au schéma d'alimentation parisien - Afin de permettre l'alimentation en eau souterraine des communes de Viry-Châtillon et à terme de Grigny, la Communauté d'agglomération des Lacs d'Essonne (CALE), a décidé en juin 2013 par convention avec Eau de Paris que l'approvisionnement en eau serait assuré à partir de l'aqueduc du Loing géré par la régie. Pendant trente ans, Viry-Châtillon (dÃ"s 2014) et Grigny (Ã partir de 2018) pourron

https://www.h2o.net PDF crée le: 10 December, 2025, 20:51

bénéficier d'une eau souterraine, dont le captage fait l'objet d'une gestion écologique, au meilleur prix. La réponse positive d'Eau de Paris à la demande de la Communauté d'agglomération des Lacs de l'Essonne d'acheter de l'eau fournie depuis l'aqueduc du Loing illustre la volonté de la régie parisienne de s'inscrire toujours davantage dans les territoires sur lesquels elle est implantée et de satisfaire, autant qu'il est possible, leurs besoins. Cette coopération est également favorable à Eau de Paris puisqu'elle lui permet d'optimiser le fonctionnement de ses installations sans fragiliser la sécurité d'alimentation en eau de la capitale.

La construction d'une unité de traitement aux ultraviolets pour l'eau du Loing - Les eaux du Loing qui représentent 25 % de l'eau consommée dans la capitale sont les seules eaux souterraines à ne pas bénéficier d'une double barriÃ"re sanitaire de désinfection. Traversant des zones de plus en plus urbanisées, avec tous les risques liés à l'activité humain acheminant l'eau en plan d'eau libre, c'est-à -dire par gravité et sans pression, il a paru nécessaire de protéger les eaux acheminées par l'aqueduc du Loing contre des infiltrations qui peuvent, éventuellement, contenir des polluants. C'est la raison de la création de l'unité de traitement des eaux du Loing dans le 14Ã"me arrondissement qui renforcera encore davantage les conditions de sécurité optimales pour les cinquante prochaines années durant le transport de l'eau, depuis les captages en Seine-et-Marne. Ce projet correspond à une évolution de l'environnement des territoires traversés par les aqueducs. L'installation comprendra une unité de traitement par rayonnement ultraviolet (UV) pour désinfecter l'eau du Loing. Les UV ne remplaceront pas la chloration. Ces deux méthodes de désinfection de l'eau cohabiteront de maniÃ"re complémentaire. Avec l'installation de l'étape de traitement aux UV, qui détruisent virus et micro-organismes, la phase de chloration se fera aprÃ"s le passage dans le réacteur UV et non plus comme initialement en forêt de Fontainebleau.

Â

Paris est approvisionnée de longue date par des ressources en eaux souterraines et des eaux de surface traitées. Eau de Paris dispose de 102 points de captage d'eaux souterraines et de deux points de prélÃ"vement des eaux de riviÃ"re : la Seine et la Marne. Les quatre aqueducs principaux acheminent l'eau des sources captée dans un rayon de 80 à 150 km autour de Paris jusqu'à des stations de désinfection et des réservoirs de stockage avant la mise en distribution dans le réseau d'eau potable.

Photo de droite, la "bâche", en forêt de Fontainebleau : la bâche de réception est le point de convergence des aqueducs du Loing et du Lunain, dont les eaux se mélangent ici à celles de la Sorques, de la Vanne et de la Voulzie.

Un schéma d'alimentation sécurisé

La grande force du schéma d'alimentation en eau défini par Eau de Paris est la diversité de ses ressources. Celles-ci proviennent en effet à parts égales d'eaux souterraines et d'eaux de riviÃ"re. Cette mixité d'alimentation permet de faire face efficacement à tout incident (canicule, crue, sécheresse comparable aux situations historiques connues, pollution accidentelle ou rupture imprévue de canalisations). Selon les circonstances, Eau de Paris peut ainsi mobiliser alternativement les différentes ressources en eau.

Cette diversification a des origines historiques. Elle s'est amorcée au XIXe siècle pour répondre aux besoins croissants en eau de la capitale et de ses communes limitrophes et remédier à la mauvaise qualité de l'eau de la Seine qui alimentait la ville. Le préfet Haussmann propose au Conseil de Paris d'aller capter des eaux de sources situées sur des

territoires éloignés. C'est sur cet héritage que l'approvisionnement en eau de la capitale se construit aujourd'hui.

Une autonomie des cinq vecteurs de distribution et de transport - La sécurisation du schéma passe par l'autonomie des vecteurs de production, distribution et de transport mis en place. Eau de Paris dispose en effet de cinq dessertes indépendantes les unes des autres. Elles sont structurées autour de trois aqueducs principaux - la Vanne et le Loing en Seine-et-Marne (sud-est de Paris), l'Avre dans l'Eure et Loir (sud-ouest de la capitale) - et des usines d'Orly et de Joinville. En cas d'indisponibilité d'un des vecteurs, les autres peuvent compenser.

Avant leur mise en distribution, les eaux souterraines et de riviÃ"res sont stockées par Eau de Paris dans cinq réservoirs situés aux portes de la capitale (dont trois réservoirs pour le stockage des eaux souterraines), assurant aux Parisiens une disponibilité permanente de l'eau potable. La régie doit aussi maintenir une pression suffisante - contrà Îée par des capteurs - en tous points du réseau, afin de garantir l'alimentation au robinet. Les incidents - une canalisation qui se rompt, par exemple - sont ainsi compensés grâce à des vannes commandées à distance, qui permettent d'injecter davantage d'eau pour maintenir la pression jusqu' réparation de la fuite.

Une gestion informatisée et automatisée - Le suivi du réseau d'aqueducs et de façon générale de l'ensemble du réseau de Paris est géré en temps réel par un systà me automatisé qui fonctionne 7 jours sur 7 : le centre de contrà le et de commande d'Eau de Paris (CCC). Dans ce lieu trà s sécurisé, de nombreux écrans de surveillance diffusent en continu les informations du réseau d'eau de la capitale. Elles concernent notamment le débit, la pression dans les canalisations qui permet l'arrivée de l'eau à tous les étages des immeubles d'habitation, ou encore le niveau de remplissage des réservoirs. Les agents du CCC assurent ainsi l'approvisionnement en eau de la capitale en continu 24 heures sur 24.

Â

Conçu pour doubler la capacité de l'aqueduc de la Vanne, l'aqueduc du Loing a été construit en parallÃ"le de ce dernie de 1987 à 1900. Il reçoit les eaux des aqueducs secondaires de la Voulzie et du Lunain. Sa course s'achÃ"ve dans le réservoir de Montsouris qui alimente tout le centre de Paris. Ses galeries, d'un diamÃ"tre de 2,50 mÃ"tres, ont été réalisées en moellons de calcaire. Les eaux s'y écoulent librement sur une pente moyenne de 10 centimÃ"tres par kilomÃ"tre.

Â

L'arrêt du Loing ne met pas en péril l'alimentation en eau de Paris du fait de ce schéma d'alimentation interconnecté. Les travaux sont programmés à une période de consommation plus faible (une partie de l'arrêt correspond à la période de vacances scolaires), les autres usines prennent le relais. Les arrêts d'eau sur un aqueduc sont généralement programmés tous les 2 ou 4 ans selon l'ouvrage (4 ans pour l'aqueduc du Loing). Ils permettent de vérifier l'état des aqueducs et de réaliser les travaux de réhabilitation / rénovation identifiés lors

de la	visite	précédente.
ue ia	VISILE	pinechedenie.

UN PATRIMOINE HISTORIQUE ET ÉCOLOGIQUE

Â

À Paris et dans sa région, depuis la lointaine époque des Romains, plusieurs aqueducs ont été construits au fil des siècles. Certains ne sont plus que des vestiges témoignant de leur époque, d'autres sont encore en service. Cette technique d'acheminement de l'eau est même toujours d'une grande modernité.

À la fin du XVIe siècle, Paris est en expansion, la ville grandit anarchiquement autour de son centre fortifié. Les 350 000 Parisiens ne bénéficient pas d'une eau de qualité. Des recherches sont menées sous le règne d'Henri IV pour retrouver et restaurer l'aqueduc romain de Lutèce. Sa réutilisation s'avère finalement impossible car il est trop dégradé. Après l'assassinat du roi par Ravaillac en 1610, sa veuve Marie de Médicis, régente au nom de leur fils, le futur Louis XIII, fait construire un nouvel aqueduc pour alimenter des fontaines publiques sur la rive gauche, et les jardins de son palais du Luxembourg. Cet aqueduc est aujourd'hui appelé "Aqueduc Médicis", et a fêté en 2013 son quatre-centième anniversaire.

Au XIXe siÃ"cle, l'hygiÃ"ne sanitaire devient une pratique quotidienne. C'est une époque de grands travaux d'infrastructures : canaux, égouts, voies ferrées, routes, bâtiments prestigieux et aqueducs. Les techniques s'industrialisent. Les outils sont de plus en plus performants. Les chantiers disposent d'une main d'œuvre abondante et bon marché. Des aqueducs modernes sont construits en utilisant le savoir-faire technique des ingénieurs et de nouveaux matériaux. C'est le cas de la fonte, qui permet de fabriquer des conduites beaucoup plus grandes et résistantes.

Entre 1836 et 1866, Paris passe de un à deux millions d'habitants. La construction des nouveaux aqueducs parisiens est due à un ingénieur novateur, EugÃ"ne Belgrand (1810-1878). Dans le cadre des grands travaux engagés par le préfet Haussmann à Paris, il développe et modernise le réseau d'eau de la capitale. Pour offrir aux Parisiens une eau de grande qualité, il est décidé de capter des sources loin de Paris, jusqu'à 150 kilomÃ"tres au-delà de la capitale. Les eaux sont acheminées jusqu'aux portes de Paris par deux aqueducs : la Dhuis (1863-1865) et la Vanne (1866-1874).

Trois autres aqueducs sont construits aprÃ"s le décÃ"s d'EugÃ"ne Belgrand : l'Avre (1890-1893) et le Loing (1897-1900). Prévu en 1884 mais retardé jusqu'aprÃ"s la guerre de 1914-1918, le dernier aqueduc du réseau parisien, celui de la Voulzie, est terminé en 1925. Ces trois aqueducs acheminent encore aujourd'hui la moitié de la consommation d'eau potable des Parisiens (483 000 m3 par jour en moyenne, en 2012).

Un programme d'investissement placé sous le signe du développement soutenable

Entretenus et améliorés, ces ouvrages hérités de l'époque de Belgrand au XIXe siÃ"cle, acheminent encore aujourd'hui l'eau potable à Paris. En charge de l'ensemble de ce patrimoine du service public de l'eau, Eau de Paris offre

les conditions d'une politique patrimoniale forte et ambitieuse.

Les aqueducs font ainsi l'objet chaque année de réhabilitations, à l'issue de diagnostics portant sur leur état intérieur et extérieur, réalisés par les équipes de l'entreprise. Ces interventions permettent d'éviter les fuites et les ruptures de canalisations et de sécuriser l'alimentation la capitale en eau potable.

L'ensemble des activités de la régie s'inscrit dans la démarche de développement soutenable portée par la Ville de Paris et sa régie. L'objectif global est de produire une eau la plus économe possible en énergie tant dans la gestion des process industriels que celle du patrimoine immobilier. La réunification de toutes les étapes de la filiÃ"re eau potable au sein de l'opérateur unique facilite également les connaissances sur les flux en tout point pour les piloter de façon optimisée.

Offrir une seconde jeunesse aux aqueducs - Afin de garantir un niveau de qualité dans la production et la distribution, Eau de Paris doit maintenir un haut niveau d'entretien et de valorisation du patrimoine industriel de l'eau. Le schéma d'investissement dont s'est dotée la régie pour la période 2012-2016 prévoit environ 70 millions d'euros de travaux par an sur l'ensemble du patrimoine du service public de l'eau, notamment les ouvrages historiques, parfois plus que centenaires. Les aqueducs constituent l'un des axes forts des programmes de travaux.

Le chantier des arcades du Grand-Maître (2012-2013) est à ce titre particuliÃ"rement innovant. Ses 192 arcades, qui supportent, sur plus de 2 000 mÃ"tres, l'aqueduc de la Vanne s'érigent ainsi dans la forêt de Fontainebleau. Constituées de béton Coignet, datant de plus d'une centaine d'années, ces installations ont subi les outrages du temps et des variations saisonniÃ"res : disjointements de maçonnerie et éclatements de mortier d'enduits risquaient de provoquer des incidents. Pour protéger les promeneurs d'éventuelles chutes de débris, les arcades se situant à l'aplomb de la voie de circulation sont en cours de rénovation. Menés depuis 2012, les travaux ont pour objectif de purger l'ouvrage de tout matériau pouvant se décrocher, de réparer la structure, de réaliser un enduit parfaitement adhÃ"rent au support et pérenne sur 10 000 m2, et de restituer une esthétique conforme à l'état d'origine de l'ensemble de l'ouvrage : une reproduction à l'identique des motifs décoratifs incrustés dans l'enduit a ainsi été réalisée.

L'auscultation des conduites - Eau de Paris développe en interne des compétences en matière de diagnostic pour optimiser la gestion

patrimoniale des aqueducs. Aussi, les visites intérieures et extérieures des ouvrages constituent la base de travail incontournable. Selon la programmation des arrêts d'eau et les tronçons d'ouvrages à réhabiliter, un programme d'études et d'auscultation est défini à l'avance, de maniÃ"re à appréhender les problématiques suffisamment en amont pour pouvoir intervenir avec la meilleure efficacité. Il en est de même pour toutes les opérations de réhabilitation d'ouvrages en élévation (arcades), ou des opérations de surveillance et de diagnostics sont toujours réalisées suffisamment en amont.

Pour entretenir les conduites difficiles d'accÃ"s, Eau de Paris a inventé des outils spécifiques d'auscultation et de connaissance de l'état du réseau, qui mêlent la mécanique et l'électronique. Cette auscultation permet de tester la résistance des conduites tous les cinq mÃ"tres environ, de repérer d'éventuels problÃ"mes et d'organiser les travaux.

Â

Les 192 arcades du Grand-Maître agrémentent plus de deux kilomÃ"tres de promenade en forêt de Fontainebleau. Cette partie de l'aqueduc de la Vanne a fait l'objet d'un vaste chantier de restauration en 2012-2013.

Une gestion écologique des aqueducs

Les aqueducs participent au développement soutenable, en favorisant les conditions de mise en œuvre de l'engagement d'Eau de Paris en faveur de la protection du milieu naturel. Cet engagement qui s'est formalisé autour de partenariats locaux et d'une adhésion à des objectifs nationaux en matiÃ"re de biodiversité, se structure autour du renforcement des mesures de protection de la ressource, du soutien sans faille aux agriculteurs bio, de l'équilibre des sources d'approvisionnement, de l'amélioration de la connaissance du réseau et de ses performances, de l'efficacité énergétique des installations...

Les aqueducs : zéro consommation énergétique - Dans les aqueducs utilisés quotidiennement par Eau de Paris, l'eau circule par gravité. Aucune énergie n'est nécessaire pour la transporter. Cette qualité écologique, trÃ"s appréciée aujourd'hui, encourage la régie à entretenir, utiliser et améliorer constamment ce patrimoine hydraulique. Soixante-douze heures sont nécessaires aux eaux issues de la source la plus éloignée, ArmentiÃ"res, en Champagne-Ardenne, pour atteindre Paris. Depuis leur prélÃ"vement dans la riviÃ"re, les eaux de surface mettent une dizaine d'heures pour rejoindre les réservoirs.

Entretenir les installations d'eau potable comme des prairies naturelles -Eau de Paris s'est engagée dans une démarche volontaire visant à lever les discontinuités écologiques, cause de l'érosion de la biodiversité. Cette démarche s'appuie sur un patrimoine qui constitue un lien majeur entre les espaces naturels et urbains, ainsi que sur des pratiques que l'entreprise a mises en place en protégeant les ressources en eau Ã chaque étape du cycle. 80 % des 470 kilomÃ"tres d'aqueducs qui alimentent Paris en eau sont composés d'une large bande enherbée permettant à de nombreuses espà ces animales et vÃ@gÃ@tales de vivre et de se dÃ@placer. Au-delà d'un entretien sans aucun pesticide inhérent à ses missions de protection de l'eau, Eau de Paris y adapte depuis une dizaine d'années l'entretien réalisé pour favoriser la biodiversité et entretient les aqueducs comme des prairies naturelles. Une seule fauche est réalisée chaque année à deux dates différentes : la premiÃ"re vers mi-juin pour la bande centrale, la seconde en septembre pour les cà tés (ou inversement). Ces espaces constituent depuis toujours des refuges pour la faune et la flore, notamment en zones urbaines ou agricoles ou la nature est moins présente. Pour leur permettre de jouer pleinement leur rà le de réservoirs de biodiversité et de continuités écologiques Ã l'échelle communale et transrégionale, et pour créer des lieux de repos et de reproduction pour les espà ces en milieu urbain dense, la régie municipale est allée au-delà d'une approche empirique. En 2012, elle a formalisé une démarche volontaire en faveur de la diversité biologique qui s'appuie sur des caractéristiques métiers et une réelle sensibilité écologique de ses agents.

Développer des pratiques d'entretien adaptées - En s'appuyant sur des inventaires et des plans de gestion, Eau de Paris a développé des pratiques d'entretien adaptées à cette richesse écologique, qu'elle étend progressivement à l'ensemble de son patrimoine. Des partenariats ont été renforcés en 2012 avec des associations et conservatoires naturalistes pour suivre l'©volution des espèces et orienter précisément les pratiques d'entretien pour les sites présentant la plus forte biodiversité. Par exemple, des nichoirs à chouette chevêche et à chouette effraie ont été fabriqués et posés sur le champ captant des Vals-de-Seine, selon les préconisations de l'association naturaliste de la vallée du Loing et du massif de Fontainebleau (ANVL), partenaire d'Eau de Paris depuis 2006.

En

septembre, un partenariat de trois ans a également été conclu avec le Conservatoire des espaces naturels de la région Centre. Il permet à ce dernier d'apporter son expertise et ses conseils de gestion du patrimoine naturel à Eau de Paris pour le champ captant de Montreuil, en Eure-et-Loir, et son site remarquable du coteau calcaire, classe en zone Natura 2000.

Créer des continuités écologiques - Apres avoir adhéré à la Stratégie nationale pour la biodiversité 2011-2020, Eau de Paris a inscrit la protection de la biodiversité a son schéma directeur des investissements 2012-2026. Sa proposition, intitulée "Au fil de l'eau, vers une Trame verte et bleue pour Eau de Paris" a été retenue par le ministère de l'écologie portant sur la "Trame verte et bleue" en milieu urbain. Deux facteurs ont permis de proposer le territoire d'Eau

de Paris comme espace pertinent pour la constitution d'un maillage écologique : la linéarité de son patrimoine et son rayonnement dans toute l'ÃŽle-de-France, ainsi que le lien qu'il constitue entre les milieux urbain, périurbain et rural.

Les espèces végétales et animales mangent, dorment, se reposent et se reproduisent en divers lieux. Elles empruntent donc des voies qui leur sont propres pour assurer leur survie. Or ces voies sont détruites par la construction des villes, des routes et autoroutes ou par la progression des terres agricoles. Les aqueducs, qui constituent des espaces naturels continus sur plusieurs dizaines de kilomètres, peuvent devenir de nouvelles voies de circulation pour ces espèces et même des zones de refuge où elles se développent. .

Â

Â ResSources

Le Pavillon de l'eau accueille jusqu'au 22 février 2014 l'exposition d'Eau de Paris "Aqueducs, des chemins pour l'eau". Cette exposition originale, conçue pour toute la famille, révÃ"le tous les secrets et l'ingéniosité des aqueducs.

Ponctuée d'objets et de manipes, l'exposition, plus particulià rement dédiée aux 10-14 ans, sensibilise à l'acheminemer de l'eau en valorisant ses dimensions techniques, fonctionnelles, historiques et patrimoniales. Des ateliers pédagogiques pour enfants, des projections cinématographiques tout public et des visites guidées sont proposés chaque samedi.

Entrée et activités entiÃ"rement gratuites.

Pavillon de l'eau